
Windows Memory
Analysis with

Volatility

A
nalyst Reference

Version 20171116

https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

2
Copyright 2017 Steve Anson

Version 20171116

Table of Volatility Modules 3
Before You Start 4
Types of Files That Can Be Analyzed 5
Volatility Command Syntax 7
Analyzing Network Connections 8
Analyzing Processes 9
Examining Running Services 16
Dumping Process Memory for Further Analysis 17
Detecting Kernel Loaded DLLs 18
Registry Artifacts in Memory 19
Special Use Plugins 21

Table of Contents

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

3
Copyright 2017 Steve Anson

Version 20171116

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

4

 Memory analysis is most effective when a known-good baseline is established. Where possible,
before an incident occurs, collect information on ports in use, processes running, and the location of
important executables on important systems to have as a baseline. By comparing results gathered
before a compromise to those gathered after an incident, anomalies on the impacted systems will
be much easier to detect. Additionally, being familiar with running processes and open ports that
are common on Windows systems is helpful for the same reason. Before attempting to examine
processes on a system, it is a good idea to familiarize yourself with processes that are typically found
on Windows systems, the location of their executable files, the way they are normally initiated
(including their parent process), and how many instances of each is normal. To help with that baseline
understanding, consult the following article: http://sysforensics.org/2014/01/know-your-windows-
processes/.

 Installation of Volatility is assumed in these notes. This can be accomplished by using a prebuilt
Linux distribution with the tool already installed such as the SANS Investigative Forensic Toolkit (SIFT)
found here: https://digital-forensics.sans.org/community/downloads or by following the instructions
listed here: https://github.com/volatilityfoundation/volatility/wiki/Installation

 These notes are designed to provide a brief introduction to the capabilities of the Volatility
Framework and to serve as a quick reference during use. Those looking for a more complete
understanding of how to use Volatility are encouraged to read the book The Art of Memory Forensics
(http://www.memoryanalysis.net/amf) upon which much of the information in this document is
based. More succinct cheat sheets, useful for ongoing quick reference, are also available from here
http://downloads.volatilityfoundation.org/releases/2.4/CheatSheet_v2.4.pdf and from here https://
digital-forensics.sans.org/media/memory-forensics-cheat-sheet.pdf.

Copyright 2017 Steve Anson
Version 20171116

http://sysforensics.org/2014/01/know-your-windows-processes/
http://sysforensics.org/2014/01/know-your-windows-processes/
https://digital-forensics.sans.org/community/downloads
https://github.com/volatilityfoundation/volatility/wiki/Installation
https://www.memoryanalysis.net/amf
https://downloads.volatilityfoundation.org//releases/2.4/CheatSheet_v2.4.pdf
https://digital-forensics.sans.org/media/memory-forensics-cheat-sheet.pdf
https://digital-forensics.sans.org/media/memory-forensics-cheat-sheet.pdf
https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

5

 Volatility can process RAM dumps in a number of different formats. It can also be used to
process crash dumps, page files, and hibernation files that may be found on forensic images of storage
drives. Finally, RAM files from virtual machine hypervisors can also be processed.
Keep in mind that since the system is running when RAM is captured, the software tool used to
capture the data stored in RAM is not able to make a perfect “Image” in the same way that we can
with non-volatile storage devices like hard disks. When capturing RAM, we can only copy each
page as it exists at that moment. Therefore, when copying RAM, the data on a page may change
right before it is copied and/or right after it is copied. Since RAM will have many pages, copying the
contents of each may take several minutes depending upon the capacity of RAM storage, the type of
removeable media being used (i.e. USB 2.0 vs. USB 3.0 or 3.1), and other activities occurring on the
system at the same time. Therefore, if the copying process takes several minutes to complete, pages
copied early in the process may contain totally different data by the time the last page is copied. If too
many changes occur during the RAM capture, the resulting RAM dump may end up being corrupted
to the point that analysis is not possible. To help minimize this risk, do not interact with the system
while capturing RAM any more than is necessary. Also remember that most tools only capture the
data that is in RAM at the time of capture, so if data has been paged out to disk, that data may not
be captured.

 Analysis of memory stored on disk, like crash dumps, page files, and hibernation files, is a bit
different than data captured from a RAM dump. Page files generally lack the context necessary to
completely interpret their data since they represent only a small amount of data relative to what
is stored in RAM. Nonetheless, usable data can be recovered from page files, so they are worth
examining. While the normal location of the page file is C:\pagefile.sys on Windows systems,
additional or alternate locations can be specified by modifying the PagingFiles registry key located at
HKLM/CurrentControlSet/System/ Control/ Session Manager/Memory Management. It is therefore
best practice to double check that registry setting when analyzing a disk image for paged RAM data.

Copyright 2017 Steve Anson
Version 20171116

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

6
Copyright 2017 Steve Anson

Version 20171116

 Contents of RAM are also stored in a hyberfil.sys hibernation file when a Windows system
enters hibernation mode to facilitate the system restarting in its previous state. Windows crash
dumps store memory contents to disk to facilitate debugging activities, and these files can likewise
be used by examiners to recover memory artifacts from the time when the crash occurred. Much
like with page files, not all crash dumps will contain sufficient information for meaningful analysis to
occur.

 Virtual Machine memory can be acquired as if it were a running on bare metal system or in
some cases through the hypervisor itself. For example, VMWare can create memory dump files in
its own format by taking a snapshot or suspending the virtual machine. Depending on the version of
VMWare and how the files are created, RAM data may be found in files with extensions .vmem, .vmss,
or .vmsn.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

7

 Volatility is written in Python, and on Linux is executed using the following syntax:

vol.py -f [name of image file] –profile=[profile] [plugin]

 In the above line, the -f option is used to indicate the name and location of the RAM dump
file to be analyzed. The –profile= option is used to tell Volatility which memory profile to use when
analyzing the dump. The [plugin] represents the location where the plugin to be used is provided.
Volatility is a flexible framework that allows multiple types of plugins to be used to extract information
from a RAM dump. Each plugin performs a specific task or set of tasks to create a result. Note that for
Windows installations using the Volatility executable, the vol.py in the example line above is replaced
with the appropriate executable name, such as volatility-2.5.exe -f [image file name] –profile=[profile]
[plugin]

 If you are not sure what type of Windows system a RAM image came from, you can ask
Volatility to give you additional details about the image with the vol.py -f [image file name]
command. This will give you suggested profiles to use on that image. To further narrow down the
most likely profile, the vol.py -f [image file name] command will use the kernel debugger
data block scan plugin to make a profile suggestion based on the KDBG header. Since the profile tells
volatility the format and type of memory objects that should be present in the RAM dump, getting the
profile correct is an important first step before any further analysis.

 Note that for the rest of this document, we will simply refer to the location of the image file
as [image] and the profile for that image as [profile]. We also will stick to the Linux command syntax,
however, the same general format can be used on Windows workstations if that is where you chose
to run Volatility. You would simply need to substitute the name of your Volatility executable as noted
above, and make substitutions such as findstr for grep where such examples are provided.

Copyright 2017 Steve Anson
Version 20171116

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

8
Copyright 2017 Steve Anson

Version 20171116

 A common starting point when examining a system for malicious behavior is identifying rogue
network connections. The primary Volatility plugin for determining network connections in Windows
systems beyond Windows XP is the plugin. It will carve through the memory dump looking
for artifacts from network activity, which means it may find sessions that were active or inactive at
the time of the RAM dump. The syntax is

vol.py -f [image] –profile=[profile]

 Sometimes this plugin is unable to find all the information necessary to reconstruct all the
active sessions due to data being paged out at the time of the dump. Additionally, it may recover
partially deleted data regarding old connections and/or generate false positive results. As a result,
it is a good idea to run commands like netstat -anob at the time of volatile data collection. To have a
point of comparison. Keep in mind that tools like netstat may be fooled by malware is running on the
live system, so the plugin may detect hidden network activity that netstat misses. Comparing
the results of both commands is therefore a best practice when possible.

 While memory analysis can provide valuable insight into network activity, and provide some of
the best evidence regarding which code on the system was responsible for it, don’t discount the need
to collect network forensics evidence as well. Consider correlating evidence from memory dumps
with network-based evidence such as log files and live packet captures. Tools like Security Onion
(https://securityonion.net) provide a great platform for network security monitoring, with tools like
Bro, Squil or Suricata often being the initial detection mechanism for suspicious network activity.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/
https://securityonion.net/

Windows Memory Analysis with Volatility

9
Copyright 2017 Steve Anson

Version 20171116

 A process can be thought of as a container that holds executable program code, imported
libraries, allocated memory, execution threads, and other elements necessary for a computer program
to function. A process receives its own allocation of memory and enables an instance of a computer
program to run on the system. Malicious code can run on a victim system either as its own process
or by injecting code into the context of an already running process. Therefore, analysis of processes is
an important aspect of memory forensics. For additional information about processes on a Windows
system, consult Windows Internals Part 1 (now in its 7th exceptional edition) by Mark Russinovich,
et. al. (https://docs.microsoft.com/en-us/sysinternals/learn/windows-internals).

Listing Processes

 On Windows systems, the kernel tracks the currently active processes using a doubly-linked
list. Each running process is found in this list, and therefore most standard Windows calls to list
processes accomplish this by walking this list and printing each process found in it. Some malware
will attempt to hide by delinking its process from this list. In those instances, most live tools run on
the system will fail to detect the malware process. When working with a memory dump, different
approaches can be taken to locate processes. For example, each process has a fixed format header
that contains a key or tag of “Proc” on Windows systems. By searching through all the memory in
a RAM dump for the known structure of a process object’s header and other attributes, Volatility
can detect processes that are not linked in the standard doubly-linked process list. By using and
comparing different methods of identifying processes, an examiner can identify processes that were
attempting to hide their presence.

 One of the easiest ways to get a list of processes that were running at the time a RAM dump
was made is:

vol.py -f [image] –profile=[profile]

 The plugin walks the doubly-linked list of processes in the same way as most commands
that run on the live system. It therefore provides a useful baseline of what would have been seen by
commands like or tasklist when the system was running, but will not give any information about
processes that were hidden by removing themselves from the process list or those that had already
terminated before the dump was captured.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/
https://docs.microsoft.com/en-us/sysinternals/learn/windows-internals

Windows Memory Analysis with Volatility

10
Copyright 2017 Steve Anson

Version 20171116

 The plugin will place the list of processes in a tree format to show which processes
spawned other processes and make their parent/child relationship clearer. However, it also relies on
walking the doubly-linked process list, and therefore suffers from the same limitations as the
plugin. It can, however, be a useful command to run, particularly to understand the relationship
between processes. For example, if a particular process is identified as malicious, understanding
what other processes it spawned helps identify other processes that may be acting maliciously (fruit
of the poisonous tree, if you will). Also, a process that spawns in an abnormal way (such as explorer.
exe being used to launch a svchost process) may also signal anomalies caused by malicious activity.
The syntax to run the module is simply:

vol.py -f [image] –profile=[profile]

 As mentioned earlier, Volatility is not limited to using only the doubly-linked process list to
identify processes. The entire memory dump can be scanned for known signatures of process objects,
and anything that matches that pattern can be displayed. This is an extremely helpful method to find
processes that have delinked from the process list to avoid detection. Since it does not rely on the
doubly-linked process list, it can also uncover information about processes that were once running
but that terminated before the dump was captured. A process scan can be run with the syntax:

vol.py -f [image] –profile=[profile]

 The output from the plugin does not provide the hierarchical view of the parent/child
relationship in the way that the plugin does. To get a similar effect, you can output the results
of into a dot file, and use a program like graphviz to display it graphically. This can be both
an informative investigative approach and also makes illustrative graphs for report purposes. To
accomplish this, a command like the following can be used:

vol.py -f [image] –profile=[profile] --output=dot --output-file=processes.dot

 This command will create the list of process in the dot format. To then convert that to a format
such as JPEG, the dot command can be used as follows:

dot -Tjpg processes.dot > processes.jpg

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

11
Copyright 2017 Steve Anson

Version 20171116

 There are many structures within a Windows system that need to track running processes.
While the doubly-linked process list is the most commonly used method for enumerating running
processes, it is also the most likely to be targeted by processes that are attempting to evade detection.
As a result, comparing the results of the doubly-linked list to other structures within the operating
system and other methods of detecting processes can help identify processes that are maliciously
hiding their presence. For such comparative analysis, the command vol.py -f [image] –profile=[profile]

 uses multiple methods for detecting processes and lists which processes are and are not
detected by each method. This comparison can help identify processes that are maliciously trying to
avoid detection. Some methods will not detect certain processes, such as those that were started
before the object upon which the detection method relies. Similarly processes that have terminated
will not be detected by methods that only track running processes. To help account for these expected
variations, the command

 vol.py -f [image] –profile=[profile] –apply-rules

 Will show True when a method detects the process, False when the method does not detect
the process, and Okay when the process is expectedly absent due to a known limitation of the method
being used. Keep in mind that only the method will detect terminated processes.

Examining A Specific Process

 Obtaining a list of processes from a memory dump file can be an important way to identify
suspicious activity on a system. However, once a process has been identified as potentially malicious,
additional steps are often needed to confirm those suspicions and to determine the nature of the
process itself. A number of different methods can be used to learn more about a particular process.

 For a process to access other elements of the system it must first acquire a handle to the
objects that it wants to manipulate. Whether reading a file, writing to a registry key, or opening a
connection to a remote share, the process must have permission to access the object and secure a
handle to that object. Permissions are determined based on the user or group that is attempting to
perform an action, and the permissions that have been assigned to that user and/or the groups of
which it is a member. A process is assigned a security token based on the user or service account
context from which it was run. This token lists the user and/or groups for which the process is
working, which in turn determines which files it may access and other security permissions. The
operating system uniquely refers to each user or group with a numeric Security Identifier (SID). To
determine the SIDs that are associated with a process’ token, use the following command:

vol.py -f [image] –profile=[profile] -p [PID]

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

12
Copyright 2017 Steve Anson

Version 20171116

 Where PID is the process identifier of the process that you wish to examine.

 In addition to permissions, a process may also be assigned privileges by the operating system
to perform certain tasks. Privileges include things like the ability to bypass file permissions in order to
read files to make backup copies, the ability to access memory of any process to perform debugging
operations, the ability to shutdown or restart the system, or the ability to load kernel drivers. These
privileges are determined in accordance with local computer policies set by the system administrator.
Malware will frequently attempt to enable privileges to allow a malicious process to perform additional
tasks. To list the privileges assigned or enabled for a particular process use the following command:

vol.py -f [image] –profile=[profile] -p [PID]

 Where PID is once again the process identifier of the process that you wish to examine. The
output of this command will list the various privileges that are present (allowed) for that process, an
indicator of whether each privilege is enabled, a note as to whether the system enabled the privilege
by default, and a description of what the privilege allows the process to do. Before a privilege may
be used, it must first be enabled. Therefore, your analysis should pay particular attention to enabled
privileges, particularly those that were not enabled by default as they indicate a privilege that the
malware bothered to specifically enable and has therefore likely used or intended to use. The –silent
option can be added to only show those privileges that were enabled.

 In addition to understanding the permission and privilege context of a process, it is important
to understand which it has opened to other system resources. A handle is a mechanism used
by the operating system to allow access from one resource to another, and to ensure that different
resources are not attempting to make conflicting changes at the same time. Specifically, a handle
controls access to kernel objects that represent other resources on the system like files, registry keys,
processes, etc. To list the opened by a process use the command:

vol.py -f [image] –profile=[profile] -p [PID]

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

13
Copyright 2017 Steve Anson

Version 20171116

 A process may have many opened, so the -t option can be used to restrict the output
to a certain type of handle. Examples include key, file and thread. To list only the to registry
keys, use the command:

vol.py -f [image] –profile=[profile] -p [PID] -t key

 File objects can obviously represent files stored on disk, but can also be used to represent
network connections. The type of device involved should be apparent when looking at the path to
the object. Some items that may be less obvious include:

• \Device\Ip \Device\Tcp and \Device\Afd\Endpoint all refer to for network connections.

• \Device\LanmanRedirector and \Device\Mup both refer to to SMB network shares.

 Searching for these devices may help you locate indications of network activity by
the process being examined. Alternatively, the following command can be used to identify drive
letter assignments, such as the C or D drives being assigned to hard drive or optical drives, but also
assignment of drive letters to mapped network drives, along with the time when the mapping was
created.

vol.py -f [image] –profile=[profile]

 If you know that a malicious process is storing data in a certain file, you can search through all
the process file to determine which process is using that file. For example, if the file name
was hiddenfile.txt, you can use the following command to identify processes that may be using that
file:

vol.py -f [image] –profile=[profile] -t file | grep hiddenfile.txt

 In addition to , it may be of use to examine the environment variables set by a process.
The basic syntax of the plugin is:
vol.py -f [image] –profile=[profile]

 This will list all environment variables for all processes that were running at the time of the
dump. However, the plugin can be restricted to a single process with the -p [PID] switch as seen
previously with plugins like , , etc. Finally, the –silent option can be employed to have
volatility compare the results of the plugin and compare it to a list of known, normal values
and then only display items that do not match the known values as programmed into the module.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

14
Copyright 2017 Steve Anson

Version 20171116

 When analyzing a process, it is important to know which DLLs (Dynamic Linked Libraries) are
imported into the process itself. A DLL contains executable code that can provide a process with
specific functionality, so understanding which DLLs a process incorporates may give insight into its
capabilities. In addition, malicious software may inject rogue DLLs into otherwise benign processes
to introduce malicious activity without standing up a new process on the system, so examining
processes for the presence of malicious DLLs or other code injection is an important analysis step.
Volatility supports this type of analysis with a few different plugins.

 Within a process’ memory space is the Process Environment Block or PEB. The PEB contains
a number of different items of interest including but not limited to:

• The path to the process’ executable on disk;
• The command line used to invoke the process;
• Three different lists of DLLs associated with the process:

• One that lists the order in which each DLL was loaded into the process;
• One that lists the DLLs based on their order in process memory;
• One that lists the order in which they are executed by the program code.

• The standard input, output, and error for the process;
• The process’ working directory.

 Most tools that run on a live system determine the DLLs used by a process by consulting the
first of the three DLL lists stored in the PEB, which tracks the order in which each DLL is loaded. As
a result, malware will sometimes modify that list to hide the presence of a DLL. Volatility has a plugin
that also parses this same list, which can be run with the following command:

vol.py -f [image] –profile=[profile] -p [PID]

 This plugin will list any executable code module, including the program itself. The program
executable will load first and should therefore be the first item in the results of this plugin. As a side
benefit, the original command line and any arguments used to originally launch the process is also
pulled from the PEB and displayed by this module. Ntdll.dll and kernel32.dll are frequently found
DLLs that load early in the invocation of many processes. After that, the Import Address Table (IAT)
of the process is used to begin loading other DLLS as specified for the process. The plugin will
report a load count of -1 (0xFFFF) for items loaded from the IAT. Other counts will be present for
other methods of loading DLLs into the process’ memory space.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

15
Copyright 2017 Steve Anson

Version 20171116

 To help detect DLLs that have unlinked for the load order list in the PEB, Volatility also has
a plugin. This plugin acts similarly to the plugin for processes in that it will
enumerate the results of DLLs listed in all three lists in the PEB and present a comparison of the
results. This helps an analyst to detect anomalies that may be indicative of an attempt to hide the
presence of a DLL. In addition, the plugin also manually scans the process’ executive
object in kernel memory looking for signatures of DLLs or other types of executable code
and presents a list of all items that it detects. In this way, even if the process memory itself has been
tampered with, the lists of stored about the process in kernel memory can be used to help
identify any tampering. One thing to be aware of in the output from this plugin is that the executable
itself will by default only appear in two out of the three PEB lists since it is not a separately loaded
DLL but is rather the main executable code. The plugin can be run with the following
syntax

vol.py -f [image] –profile=[profile] -p [PID]

 Another plugin that may come in handy in detecting malicious code that has been injected
into a process is . This plugin looks for suspicious memory areas within a process and displays
them along with their associated assembly code so that an analyst can determine if it is suspicious.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

16
Copyright 2017 Steve Anson

Version 20171116

 Services are processes that run automatically, typically do not require user interaction, and run
in predefined user context rather than the context of a user that manually launches them. The Services
Control Manager (SCM) is responsible for starting and managing services. The SCM is implemented
by services.exe. Services are typically defined in the registry HKLM\SYSTEM\CurrentControlSet\
services key. Each configured service will normally have a subkey and details of any DLLs needed by
that services can be found in its respective subkey.

 Volatility uses a scanning technique to detect services in memory dumps, even those that use
unusual loading methods or actively try to avoid detection. Again, having results of tasklist /SVC as
comparison is a good practice, so running such commands at collection time is a good idea.

To scan for services, use the plugin, with the following syntax:

vol.py -f [image] –profile=[profile]

You can optionally include the –verbose option for additional details.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

17
Copyright 2017 Steve Anson

Version 20171116

 Volatility can dump the contents of a process’ or DLL’s memory space for further analysis
with other reverse engineering tools if desired. Keep in mind that variables that exist within the
program are instantiated with actual values when a process is running. Additionally, some parts of
the process memory space may be paged to disk or otherwise inaccessible at the time of the memory
dump. Finally, code that is packed or encoded on disk may be unpacked in memory. As a result, the
information dumped from a memory dump is not going to be identical to the information stored in
the associated executable on disk. For this reason, traditional hash matching techniques and many
signature based detection mechanisms will not work when run against process memory extracted
by Volatility. Nonetheless, antivirus tools may be able to offer insight into the nature of a process
recovered from a RAM dump and reverse engineering tools may be able to determine the actions
taken by the process.

If desired, the plugin can be used to dump contents of process memory.

vol.py -f [image] –profile=[profile] -p [PID] –dump-dir=[directory/]

 The above will dump the entire contents of the process memory to a file in the
directory specified by –dump-dir= option. With addition of the –memory switch, any memory that
is not able to be dumped due to paging or other reasons is filled in with zeros to keep the relative
location of other objects consistent with the original process. Similar to the plugin, the
 and plugins can be used to dump specific DLLs from within a process’ memory
space.

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

18
Copyright 2017 Steve Anson

Version 20171116

 If determining which the kernel has loaded is of interest in your analysis, the modules
and plugins can be used. The following command walks the doubly-linked list of loaded
kernel drivers found in the LDR_DATA_TABLE_ENTRY structures and provides the name and path of
DLLs loaded by the kernel. The syntax is as follows:

vol.py -f [image] –profile=[profile]

 If a DLL has been removed from that list, the modules plugin will not find it. However, the

 plugin will scan the memory dump for the tags or signatures of kernel loaded DLLs and
provide a list based on its scan. Because it relies on pattern matching and interpretation of memory
data, it may result in false positive results. The syntax is

vol.py -f [image] –profile=[profile]

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

19
Copyright 2017 Steve Anson

Version 20171116

 Since many elements of the Windows registry are updated or read frequently by the OS, it
is very common to capture registry key data in a RAM dump. Volatility has a plugin to list
registry hives, including their path on disk. There may also be a hive listed by Volatility as “[no name]”
that represents pointers to other hives and is normal. The syntax for this command is

vol.py -f [image] –profile=[profile]

 Malware will often use autostart locations, places in the registry or elsewhere that causes
executable code to be launched automatically as a system starts or a user logs in. Since many of
these locations are in the registry it may benefit your analysis to look at specific keys for evidence of
malware. The plugin provides the ability to view the text data stored within a registry key.
The syntax for this plugin is

vol.py -f [image] –profile=[profile] -K “Path\To\Key”

where “Path\To\Key” represents that path to the specific key that you desire to examine.

 For example, to determine the current control set being used by the system, the current control
set key can be examined with the command

vol.py -f [image] –profile=[profile] -K currentcontrolset

 The registry also stores multiple lists of recently used programs, including the key
that tracks recently run programs and the time of their execution. While the exact location of the

 key varies depending on the version of Windows involved, the plugin is able to
locate and parse the data in the key into readable text. The syntax is

vol.py -f [image] –profile=[profile] -K “Path\To\Key”

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

20
Copyright 2017 Steve Anson

Version 20171116

 Similarly, information about executables that were previously present on the system can be
gleaned from the and keys of the registry. The and plugins
respectively will parse and present this information.

 If needed, password hashes can be dumped from memory for external password cracking.
Volatility is able to obtain the system key from the SYSTEM hive and use it to extract the hashes from
the SAM hive. The syntax of the command is

vol.py -f [image] –profile=[profile]

 Additional user password data may be recoverable from the LSA Secrets stored in the registry.
Again, Volatility automates that extraction with the plugin, with the following syntax:

vol.py -f [image] –profile=[profile]

 

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

Windows Memory Analysis with Volatility

21
Copyright 2017 Steve Anson

Version 20171116

 If you notice that a suspect had the notepad.exe application open, there is a volatility plugin
that can recover typed text from the notepad.exe process memory. Use the following syntax,

vol.py -f [image] –profile=[profile]

 To search for commands previously entered into a command shell, try running the
plugin as follows:

vol.py -f [image] –profile=[profile]

Additionally, the plugin uses an alternate method to perform a similar search:

vol.py -f [image] –profile=[profile]

https://www.linkedin.com/in/steveanson/
https://twitter.com/ForwardDefense
https://www.forwarddefense.com/

	Analyzing Network Connections
	Analyzing Processes
	Listing Processes
	Examining A Specific Process

	Special use plugins
	Table of Contents
	Analyzing Network Connections1
	Analyzing Processes1
	Special use plugins 1
	Page14
	Page13
	Page11
	Page12
	Page15
	Page9
	10
	20
	Table of Volatility Modules
	Before You Start
	Types of Files That
	Can Be Analyzed
	Volatility Command Syntax
	Analyzing Network Connections
	Analyzing Processes
	Examining Running Services
	Dumping Process Memory for Further Analysis
	Detecting Kernel Loaded DLLs
	Registry Artifacts in Memory
	Special Use Plugins
	cmdscan1
	envars
	SAMPLE
	Bookmark 33
	cmdscan-21-1
	cmdscan-21-2
	consoles-21-1
	consoles-21-2
	dlldump-17-1
	dlllist-14-1
	dlllist-14-2
	envars-13-1
	envars-13-2
	envars-13-3
	getsids-11-1
	handles12-1
	handles-12-2
	handles-12-3
	handles-13-4
	handles-13-5
	handles-13-6
	handles-13-7
	handles-13-8
	handles-13-9
	handles-13-10
	handles-13-11
	handles-13-12
	hivelist-19-1
	hivelist-19-2
	imageinfo-7-1
	kdbgscan-7-1
	malfind-15-1
	moddump-17-1
	modules-15-1
	modules-15-2
	netscan-8-1
	netscan-8-2
	netscan-8-3
	notepad-21-1
	printkey-19-1
	printkey-19-2
	printkey-19-3
	printkey-19-4
	privs-12-1
	privs-13-2
	procdump-17-1
	procdump-17-2
	procdump-17-3
	procdump-17-4
	pslist-9-1
	pslist-9-2
	pslist-9-3
	pslist-10-4
	psscan-10-1
	psscan-10-2
	psscan-10-3
	psscan-10-4
	psscan-10-5
	pstree-10-1
	pstree-10-2
	pstree-10-3
	pstree-10-4
	psxview-11-1
	psxview-11-2
	psxview-15-3
	shellbags-20-1
	shellbags-20-2
	shimcache-20-1
	shimcache-20-2
	svcscan-16-1
	svcscan-16-2
	symlinkscan-13-1
	userassist-19-1
	userassist-19-2
	userassist-19-3
	userassist-19-4
	userassist-19-5
	lsadump-20-1
	lsadump-20-2
	modscan-18-1
	modscan-18-2
	modscan-18-3
	modules-18-3
	modules-18-4
	hashdump-20-1
	ldrmodules-15-4
	ldrmodules-15-3
	ldrmodules-15-2
	ldrmodules-15-1

	Button 217:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Button 218:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Button 470:
	Button 471:
	Button 186:
	Button 315:
	Button 316:
	Button 317:
	Button 318:
	Button 319:
	Button 320:
	Button 321:
	Button 322:
	Button 323:
	Button 324:
	Button 325:
	Button 326:
	Button 327:
	Button 328:
	Button 329:
	Button 427:
	Button 330:
	Button 331:
	Button 332:
	Button 333:
	Button 334:
	Button 335:
	Button 336:
	Button 337:
	Button 338:
	Button 339:
	Button 340:
	Button 341:
	Button 342:
	Button 343:
	Button 432:
	Button 469:
	Button 12:
	Button 434:
	Button 433:
	Button 13:
	Button 436:
	Button 435:
	Button 438:
	Button 437:
	Button 371:
	Button 14:
	Button 370:
	Button 440:
	Button 439:
	Button 377:
	Button 378:
	Button 379:
	Button 176:
	Button 442:
	Button 441:
	Button 391:
	Button 392:
	Button 393:
	Button 177:
	Button 444:
	Button 443:
	Button 400:
	Button 394:
	Button 401:
	Button 402:
	Button 395:
	Button 396:
	Button 403:
	Button 397:
	Button 398:
	Button 446:
	Button 445:
	Button 404:
	Button 405:
	Button 399:
	Button 355:
	Button 448:
	Button 447:
	Button 386:
	Button 357:
	Button 358:
	Button 356:
	Button 450:
	Button 449:
	Button 359:
	Button 360:
	Button 361:
	Button 362:
	Button 363:
	Button 413:
	Button 364:
	Button 365:
	Button 366:
	Button 367:
	Button 385:
	Button 352:
	Button 353:
	Button 354:
	Button 452:
	Button 451:
	Button 350:
	Button 351:
	Button 454:
	Button 453:
	Button 428:
	Button 406:
	Button 429:
	Button 375:
	Button 376:
	Button 430:
	Button 431:
	Button 372:
	Button 456:
	Button 455:
	Button 411:
	Button 412:
	Button 180:
	Button 458:
	Button 457:
	Button 387:
	Button 388:
	Button 389:
	Button 390:
	Button 373:
	Button 181:
	Button 348:
	Button 460:
	Button 459:
	Button 424:
	Button 421:
	Button 425:
	Button 422:
	Button 423:
	Button 182:
	Button 462:
	Button 461:
	Button 368:
	Button 369:
	Button 381:
	Button 382:
	Button 383:
	Button 414:
	Button 415:
	Button 416:
	Button 417:
	Button 384:
	Button 418:
	Button 183:
	Button 464:
	Button 463:
	Button 409:
	Button 407:
	Button 410:
	Button 408:
	Button 426:
	Button 419:
	Button 420:
	Button 466:
	Button 465:
	Button 380:
	Button 184:
	Button 344:
	Button 345:
	Button 347:
	Button 346:
	Button 468:
	Button 467:

